Friday, February 22, 2019

Euler-Lagrange Equation

Euler-Lagrange Equation 

Before we move on to the euler-lagrange equation first let's look at some definitions and notations that we will use.


Stationary Point : A point x0 at which the derivative of a function f (x) vanishes, that is,

                         f ' (x0) = 0

is called a stationary point.
A stationary point may be a minimum or maximum.

For example : let
                               f (x) = x2
  it's derivative is 
                              f ' (x) = 2 x

clearly at x0 = 0 we have

                                   f ' (0) = 0

Hence x0 = 0 is a stationary point of f (x) = x2



Notations : we will denote a functional by  L [y] , where y is a function of x.

y' is the partial differentiation of y(x) with respect to x.


fx  , fy   and fy'  are partial derivatives of functional f with respect to x, y and y' respectively.

        

              Euler-Lagrange Equatioin 

A necessary condition for 


to have a stationary point is that f(x, y, y') satisfies the following equation
                    


which is the Euler-Lagrange Equation.

Other form of Euler-Lagrange Equation is 





On solving euler-lagrange equation we will get a function y(x) which makes the given functional stationary. In other words, maximum or minimum of a functional happens on the function y(x).



Let us take a look at an example : Consider the functional 
                 


Here 
       f(x, y, y') = y'2 - y2
then
       fy  = - 2 y  and fy'  = 2 y'

using euler-lagrange equation we get







Hence the given functional achieves it's extremum only on the curve  y = sin x .  



what is a Functional? back     

(comment down below your doubts)                                                

No comments:

Post a Comment